Preparation and performance of g-C3N4/CuS film as counter electrode for quantum dot sensitized solar cells
نویسندگان
چکیده
In this work g-C3N4/CuS composite film was prepared by successive ion layer adsorption and reaction (SILAR) method used as the counter electrode in quantum dot sensitized solar cell (QDSSCs). To configure cell, CdSe CdS dots acted sensitizers on photoanode side, polysulphide electrolyte copper sulphide deposited into g-C3N4 structure side. Scanning electron microscope X-ray diffraction were to characterize morphology of materials, respectively. The photovoltaic performance analysed a standard simulator. results revealed that photoelectric conversion efficiency reached 3.65% under condition AM 1.5 irradiation intensity 100mW/cm2.
منابع مشابه
Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells
Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot- sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemic...
متن کاملRecent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells
Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes have shown significant properties such...
متن کاملSILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملCounter Electrode for Dye-sensitized Solar Cells
Improved Photocurrent of a Poly (3,4-ethylenedioxythiophene)-ClO4 /TiO2 Thin Filmmodifi ed Counter Electrode for Dye-sensitized Solar Cells Sho Sakurai, Yuka Kawamata, Masashi Takahashi and Koichi Kobayashi 2* 1 Department of Chemistry and Energy Engineering, Tokyo City University, Tokyo 158-8557, JAPAN 2 Research Center for Energy and Environmental Science, Advance Research Laboratory, Tokyo C...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Processing and Application of Ceramics
سال: 2022
ISSN: ['1820-6131', '2406-1034']
DOI: https://doi.org/10.2298/pac2202167c